
Organizing Principles for Understanding Matter 

Symmetry 

Topology 

Interplay between symmetry and topology has led to a new understanding of  

electronic phases of matter. 

• Conceptual simplification 

 
• Conservation laws 
 

• Distinguish phases of matter 
      by pattern of broken symmetries 

• Properties insensitive to 

      smooth deformation 
 
• Quantized topological numbers 

 
• Distinguish topological phases  

      of matter 
       

genus = 0 genus = 1 

symmetry group p31m symmetry group p4 



Topology and Quantum Phases 

Topological Equivalence :    Principle of Adiabatic Continuity 

Quantum phases with an energy gap are topologically 

equivalent if they can be smoothly deformed into one 

another without closing the gap. 

 

Topologically distinct phases are separated by 

quantum phase transition. 

Topological Band Theory 

Describe states that are adiabatically connected to 

non interacting fermions 

 

Classify single particle Bloch band structures 

Eg ~ 1 eV 

Band Theory of Solids 
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Topological Electronic Phases 

Many examples of topological band phenomena 

States adiabatically connected to independent electrons: 
 

  - Quantum Hall (Chern) insulators 
  - Topological insulators 
  - Weak topological insulators 

  - Topological crystalline insulators 
  - Topological (Fermi, Weyl and Dirac) semimetals ….. 

Beyond Band Theory:  Strongly correlated states 

State with intrinsic topological order 
 

   -  fractional quantum numbers 
   -  topological  ground state degeneracy  
   -  quantum information 
 

    - Symmetry protected topological states  
    - Surface topological order …… 

Many real materials 

and experiments 

Topological Superconductivity 

Much recent conceptual  

progress, but theory is 

still far from the real electrons 

Proximity induced topological superconductivity 

 
Majorana bound states, quantum information 

Tantalizing recent  

experimental progress 



Topological Band Theory 

Lecture #1:  Topology and Band Theory 
 

Lecture #2:  Topological Insulators in 2 and 3 dimensions 

                     Topological Semimetals 
 

Lecture #3:  Topological Superconductivity  

                      Majorana Fermions  

                      Topological quantum computation 

General References : 

 
“Colloquium: Topological Insulators” 

       M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) 

 

“Topological Band Theory and the Z2 Invariant,” 

       C. L. Kane in “Topological insulators”  

       edited by M. Franz and L. Molenkamp, Elsevier, 2013. 



Topology and Band Theory 

I.     Introduction 

        - Insulating State, Topology and Band Theory  

II.    Band Topology in One Dimension 

         - Berry phase and electric polarization 

         - Su Schrieffer Heeger model :  

              domain wall states and Jackiw Rebbi problem 

         - Thouless Charge Pump 

III.   Band Topology in Two Dimensions 

          - Integer quantum Hall effect 

          - TKNN invariant 

          - Edge States, chiral Dirac fermions 

IV.   Generalizations 

          - Bulk-Boundary correspondence 

          - Weyl semimetal 

          - Higher dimensions 

          - Topological Defects 



The Insulating State 

The Integer Quantum Hall State 

g cE 

2D Cyclotron Motion,    sxy =  e2/h 

E 

Insulator vs Quantum Hall state 

What’s the difference?   Distinguished by Topological Invariant 
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Topology  
The study of geometrical properties that are insensitive to smooth deformations 

Example:  2D surfaces in 3D 

A closed surface is characterized by its genus, g = # holes 

g=0 g=1 

g is an integer topological invariant that can be expressed in terms of the  

gaussian curvature k that characterizes the local radii of curvature 
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A good math book :   Nakahara, ‘Geometry, Topology and Physics’ 



Band Theory of Solids 

Bloch Theorem :    
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k Brillouin Zone  

   Torus, 

Topological Equivalence :  adiabatic continuity 

( ) ( )n nE uk k(or equivalently to   and  )

Band structures are equivalent if they can be continuously deformed  

into one another without closing the energy gap 

Band Structure :    
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Berry Phase 

Phase ambiguity of quantum mechanical wave function 
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Berry connection : like a vector potential ( ) ( )i u u - kA k k
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Topology in one dimension : Berry phase and electric polarization 

Classical electric polarization : 

+Q -Q 
1D insulator 

Proposition:  The quantum polarization is a Berry phase 
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see, e.g. Resta, RMP 66, 899 (1994)  
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Circumstantial evidence #1 : 

•  The end charge is not completely determined by the bulk  

    polarization P because integer charges can be added or  

     removed from the ends  :  

•  The Berry phase is gauge invariant under continuous gauge transformations,  

    but is not gauge invariant under “large” gauge transformations.  
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gauge invariant Berry curvature 

The polarization and the Berry phase share the same ambiguity: 

 

They are both only defined modulo an integer. 



Circumstantial evidence #2 : 
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A slightly more rigorous argument:   

Construct Localized Wannier Orbitals : 
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Wannier states are gauge dependent, but for a sufficiently smooth gauge, 

they are localized states associated with a Bravais Lattice point R 
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Su Schrieffer Heeger Model 
model for polyacetylene 

simplest “two band” model 
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Provided symmetry requires dz(k)=0, the states with t>0 and t<0 are distinguished by 

an integer winding number.   Without extra symmetry, all 1D band structures are  

topologically equivalent. 

A,i 
B,i 

t>0 :  Berry phase 0 

P = 0 

t<0 :  Berry phase p 

P = e/2 

Gap 4|t| 

Peierls’ instability → t 

A,i+1 



“Chiral” Symmetry : 

Reflection Symmetry : 

Symmetries of the SSH model 

•  Artificial symmetry of polyacetylene.  Consequence  

        of bipartite lattice with only A-B hopping: 

 

•  Requires dz(k)=0 :   integer winding number 

 
•  Leads to particle-hole symmetric spectrum: 
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•  Real symmetry of polyacetylene.   

 

•  Allows dz(k)≠0, but constrains dx(-k)= dx(k), dy,z(-k)= -dy,z(k) 

 

•  No p-h symmetry, but polarization is quantized:   Z2 invariant  

P = 0 or e/2   mod e 



Domain Wall States 
An interface between different topological states has topologically protected midgap states 

Low energy continuum theory : 

For small t focus on low energy states with k~p/a  xk q q i
a

p
   -   ;   
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Massive 1+1 D Dirac Hamiltonian 

“Chiral” Symmetry : 
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Zero mode :   topologically protected eigenstate at E=0 

                       (Jackiw and Rebbi 76, Su Schrieffer, Heeger 79) 

Any eigenstate at +E  

has a partner at -E 



Thouless Charge Pump 
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t=T 
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The integral of the Berry curvature defines the first Chern number, n, an integer  

topological invariant characterizing the occupied Bloch states, ( , )u k t

In the 2 band model, the Chern number is related to the solid angle swept out by 

which must wrap around the sphere an integer n times. 
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The integer charge pumped across a 1D insulator in one period of an adiabatic  cycle  

is a topological invariant that characterizes the cycle. 



Integer Quantum Hall Effect :  Laughlin Argument 

Adiabatically thread a quantum of magnetic flux through cylinder. 
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TKNN Invariant 
Thouless, Kohmoto, Nightingale and den Nijs  82 

View cylinder as 1D system with subbands labeled by 
0
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Distinguishes topologically distinct 2D band structures.  Analogous to Gauss-Bonnet thm. 

 

Alternative calculation:  compute sxy via Kubo formula 
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TKNN Invariant Thouless, Kohmoto,  

Nightingale and den Nijs  82 

Physical meaning:  Hall conductivity 
 

Laughlin Argument:  Thread magnetic flux 0 = h/e through a 1D cylinder 

                                  Polarization changes by sxy 0 
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Graphene E 

k 

Two band model  

Novoselov et al. ‘05 
www.univie.ac.at  
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Topological gapped phases in Graphene 

1.   Broken P :  eg  Boron Nitride  

( ) v zH ms s   K q q

ˆ# ( )n  d ktimes  wraps around sphere

m m -

Break P or T symmetry :    

2 2 2( ) | |vE m  q q

Chern number  n=0   :  Trivial Insulator 

2.   Broken T : Haldane Model ’88 
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Chern number  n=1   :  Quantum Hall state 
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Edge States 
Gapless states at the interface between topologically distinct phases 

IQHE state 

n=1 

Egap 

Domain wall 

bound state 0 
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Vacuum 
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Edge states ~ skipping orbits 

Lead to quantized transport 

Chiral Dirac fermions are unique 1D states :   

     “One way” ballistic transport, responsible for quantized  

     conductance.  Insensitive to disorder, impossible to localize 

Fermion Doubling Theorem :  

    Chiral Dirac Fermions can not exist in a purely 1D system.  
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Band inversion transition : Dirac Equation 
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Bulk - Boundary Correspondence 

Bulk – Boundary Correspondence : 

NR (NL) = # Right (Left) moving chiral fermion branches intersecting EF 

N = NR - NL is a topological invariant characterizing the boundary.   

N = 1 – 0 = 1 

N = 2 – 1 = 1 

E 

ky K K’ 

EF 

Haldane Model 

E 

ky K K’ 

EF 

The boundary topological invariant  

N characterizing the gapless modes 
Difference in the topological invariants 

n characterizing the bulk on either side = 



Weyl Semimetal 

Gapless “Weyl points” in momentum space are topologically protected in 3D 

A sphere in momentum space can have a Chern number:   

2 ( )S
S

n d k  F k
S 

nS=+1:   S must enclose a degenerate Weyl point: 

              Magnetic monopole for Berry flux 
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Total magnetic charge in Brillouin zone must be zero:   Weyl points 

must come in +/- pairs. 



Surface Fermi Arc 
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Generalizations 

Higher Dimensions :  “Bott periodicity”   d → d+2 

d=4 :  4 dimensional generalization of IQHE 

( ) ( )ij i ju u d  kA k k k

d  F A A A
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Boundary states :  3+1D Chiral Dirac fermions 

Non-Abelian Berry connection 1-form 

Non-Abelian Berry curvature 2-form 

2nd Chern number  =  integral of 4-form over 4D BZ 

no symmetry 

chiral symmetry 

Zhang, Hu ‘01 



Topological Defects 
Consider insulating Bloch Hamiltonians that vary slowly in real space  

defect line 

s 

( , )H H s k

2nd Chern number : 
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Generalized bulk-boundary correspondence : 

   n specifies the number of chiral Dirac fermion modes bound to defect line 

1 parameter family of 3D Bloch Hamiltonians 

Example : dislocation in 3D layered IQHE 

Gc 
1

2
cn

p
 G B

Burgers’ vector 

3D Chern number 

(vector ┴ layers) 

Are there other ways to engineer 

1D chiral dirac fermions? 

Teo, Kane ‘10 


